Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.583
Filtrar
1.
Sci Rep ; 14(1): 8608, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615032

RESUMO

This study investigated the influence of cadmium (Cd) and copper (Cu) heavy metals on germination, metabolism, and growth of zucchini seedlings (Cucurbita pepo L.). Zucchini seeds were subjected to two concentrations (100 and 200 µM) of CdCl2 and CuCl2. Germination parameters, biochemical and phytochemical attributes of embryonic axes were assessed. Results revealed that germination rate remained unaffected by heavy metals (Cd, Cu). However, seed vigor index (SVI) notably decreased under Cd and Cu exposure. Embryonic axis length and dry weight exhibited significant reductions, with variations depending on the type of metal used. Malondialdehyde and H2O2 content, as well as catalase activity, did not show a significant increase at the tested Cd and Cu concentrations. Superoxide dismutase activity decreased in embryonic axis tissues. Glutathione S-transferase activity significantly rose with 200 µM CdCl2, while glutathione content declined with increasing Cd and Cu concentrations. Total phenol content and antioxidant activity increased at 200 µM CuCl2. In conclusion, Cd and Cu heavy metals impede zucchini seed germination efficiency and trigger metabolic shifts in embryonic tissue cells. Response to metal stress is metal-specific and concentration-dependent. These findings contribute to understanding the intricate interactions between heavy metals and plant physiology, aiding strategies for mitigating their detrimental effects on plants.


Assuntos
Cádmio , Cucurbita , Cádmio/toxicidade , Cobre/toxicidade , Peróxido de Hidrogênio , Estresse Oxidativo , Sementes
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612673

RESUMO

Pumpkin (Cucurbita maxima) is an important vegetable crop of the Cucurbitaceae plant family. The fruits of pumpkin are often used as directly edible food or raw material for a number of processed foods. In nature, mature pumpkin fruits differ in size, shape, and color. The Atlantic Giant (AG) cultivar has the world's largest fruits and is described as the giant pumpkin. AG is well-known for its large and bright-colored fruits with high ornamental and economic value. At present, there are insufficient studies that have focused on the formation factors of the AG cultivar. To address these knowledge gaps, we performed comparative transcriptome, proteome, and metabolome analysis of fruits from the AG cultivar and a pumpkin with relatively small fruit (Hubbard). The results indicate that up-regulation of gene-encoded expansins contributed to fruit cell expansion, and the increased presence of photoassimilates (stachyose and D-glucose) and jasmonic acid (JA) accumulation worked together in terms of the formation of large fruit in the AG cultivar. Notably, perhaps due to the rapid transport of photoassimilates, abundant stachyose that was not converted into glucose in time was detected in giant pumpkin fruits, implying that a unique mode of assimilate unloading is in existence in the AG cultivar. The potential molecular regulatory network of photoassimilate metabolism closely related to pumpkin fruit expansion was also investigated, finding that three MYB transcription factors, namely CmaCh02G015900, CmaCh01G018100, and CmaCh06G011110, may be involved in metabolic regulation. In addition, neoxanthin (a type of carotenoid) exhibited decreased accumulation that was attributed to the down-regulation of carotenoid biosynthesis genes in AG fruits, which may lead to pigmentation differences between the two pumpkin cultivars. Our current work will provide new insights into the potential formation factors of giant pumpkins for further systematic elucidation.


Assuntos
Cucurbita , Frutas , Frutas/genética , Cucurbita/genética , Multiômica , Regulação para Baixo , Carotenoides , Glucose
3.
BMC Plant Biol ; 24(1): 294, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632532

RESUMO

BACKGROUND: Floral scents play a crucial role in attracting insect pollinators. Among the compounds attractive to pollinators is 1,4-dimethoxybenzene (1,4-DMB). It is a significant contributor to the scent profile of plants from various genera, including economically important Cucurbita species. Despite its importance, the biosynthetic pathway for the formation of 1,4-DMB was not elucidated so far. RESULTS: In this study we showed the catalysis of 1,4-DMB in the presence of 4-methoxyphenol (4-MP) by protein extract from Styrian oil pumpkin (Cucurbita pepo) flowers. Based on this finding, we identified a novel O-methyltransferase gene, Cp4MP-OMT, whose expression is highly upregulated in the volatile-producing tissue of pumpkin flowers when compared to vegetative tissues. OMT activity was verified by purified recombinant Cp4MP-OMT, illustrating its ability to catalyse the methylation of 4-MP to 1,4-DMB in the presence of cofactor SAM (S-(5'-adenosyl)-L-methionine). CONCLUSIONS: Cp4MP-OMT is a novel O-methyltransferase from C. pepo, responsible for the final step in the biosynthesis of the floral scent compound 1,4-DMB. Considering the significance of 1,4-DMB in attracting insects for pollination and in the further course fruit formation, enhanced understanding of its biosynthetic pathways holds great promise for both ecological insights and advancements in plant breeding initiatives.


Assuntos
Anisóis , Cucurbita , Metiltransferases , Metiltransferases/genética , Melhoramento Vegetal , Polinização , Plantas/metabolismo , Flores/metabolismo , Catálise
4.
BMC Genomics ; 25(1): 384, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637729

RESUMO

BACKGROUND: Curcubita ficifolia Bouché (Cucurbitaceae) has high value as a food crop and medicinal plant, and also has horticultural value as rootstock for other melon species. China is home to many different cultivars, but the genetic diversity of these resources and the evolutionary relationships among them, as well as the differences between C. ficifolia and other Cucurbita species, remain unclear. RESULTS: We investigated the chloroplast (cp) genomes of 160 C. ficifolia individuals from 31 populations in Yunnan, a major C. ficifolia production area in China. We found that the cp genome of C. ficifolia is ~151 kb and contains 128 genes, of which 86 are protein coding genes, 34 encode tRNA, and eight encode rRNAs. We also identified 64 SSRs, mainly AT repeats. The cp genome was found to contain a total of 204 SNP and 57 indels, and a total of 21 haplotypes were found in the 160 study individuals. The reverse repeat (IR) region of C. ficifolia contained a few differences compared with this region in the six other Cucurbita species. Sequence difference analysis demonstrated that most of the variable regions were concentrated in the single copy (SC) region. Moreover, the sequences of the coding regions were found to be more similar among species than those of the non-coding regions. The phylogenies reconstructed from the cp genomes of 61 representative species of Cucurbitaceae reflected the currently accepted classification, in which C. ficifolia is sister to the other Cucurbita species, however, different interspecific relationships were found between Cucurbita species. CONCLUSIONS: These results will be valuable in the classification of C. ficifolia genetic resources and will contribute to our understanding of evolutionary relationships within the genus Cucurbita.


Assuntos
Cucurbita , Cucurbitaceae , Genoma de Cloroplastos , Humanos , Cucurbita/genética , Cucurbitaceae/genética , Filogenia , China , Cloroplastos/genética , Variação Genética
5.
Biotechnol J ; 19(4): e2400006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581090

RESUMO

The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of ß-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.


Assuntos
Cucumis melo , Cucurbita , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Perfilação da Expressão Gênica , Cucurbita/genética , Cucurbita/metabolismo , Cucurbitaceae/genética , Sacarose/metabolismo
6.
PLoS One ; 19(4): e0300845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635826

RESUMO

Cucurbita moschata (Butternut squash) seeds are a rich source of nutrition containing nutrients including iron, zinc, copper, calcium, potassium, and phosphorus. The aim of this study was to determine if Cucurbita Moschata squash seed paste improves zinc and iron status, anthropometric status, and dietary intake in preschool children. A pretest-posttest control group trial using cluster randomisation was conducted over 6 months. Four preschools were randomly assigned to receive 100 g of intervention or 100 g of a placebo as the control to enhance iron and zinc status. A total of 276 preschool children were recruited from eight government registered Early Childhood Development centres in Limpopo province, South Africa. The control group consumed Cucurbita moschata flesh twice-weekly, while the intervention group consumed Cucurbita moschata seed paste twice-weekly during a six-month period. Iron (serum iron, transferrin, transferrin saturation, ferritin) and zinc (serum zinc) status and anthropometric indices such as weight, height and mid upper arm circumference for children were evaluated at baseline and the endpoint. Iron and zinc-rich food consumption was measured using a 24-hour dietary recall and food record during the study, and dietary intake was estimated using a food frequency questionnaire which was conducted at the beginning and endpoint. The intervention group significantly improved in the mean serum iron 0.23 µg/dL (95% CI: 0.11;0.33); ferritin 0.21µg/dL (95% CI: 0.13;0.39), transferrin saturation 0.33% (0.23;0.74) and zinc 0.16 µmol/dl (95% CI: 0.13;0.25) at the end of the study. In addition, the intervention group exhibited greater mean weight for age of 0.13 z-score (95% CI: 0.28; 0.34) and weight for height of 0.04 z-score (95% CI: 0.12,0.05), as well as the consumption of iron (p < 0,001), zinc (p < 0,001), and vitamin C (p < 0.001). At the end of the trial, fiber (p < 0.001), riboflavin (p = 0.001), vitamin B6 (p < 0.001), and vitamin B12 (p < 0.001) were significantly higher in the control group. Thus, the inclusion of intervention in the diet of children in an impoverished area of South Africa improved the iron and zinc status of these children. This supplement could be a cost effective and sustainable approach to improve nutrient status in rural South Africa. Trial registration: Pan African Clinical Trial Registry (PACTR202308740458863).


Assuntos
Cucurbita , Ferro , Humanos , Pré-Escolar , Zinco , África do Sul , Ferritinas , Sementes , Transferrina
7.
PLoS One ; 19(4): e0300864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635849

RESUMO

Chia (Salvia hispanica L.) seed (CS) and Pumpkin (Cucurbita moschata) seed (PS) are used in ruminant diets as energy sources. The current experiment studied the impact of dietary inclusion of CS and PS on nutrient intake and digestibility, milk yield, and milk composition of dairy sheep. Twelve primiparous Texel × Suffolk ewes [70 ± 5 days in milk (DIM); 0.320 ± 0.029 kg milk yield] were distributed in a 4 × 3 Latin square design and fed either a butter-based control diet [CON; 13 g/kg dry matter] or two diets with 61 g/kg DM of either CS or PS. Dietary inclusion of CS and PS did not alter live weight (p >0.1) and DM intake (p >0.1). However, compared to the CON, dietary inclusion of both CS and PS increased the digestibility of neutral detergent fiber (p <0.001) and acid detergent lignin (p < 0.001). Milk production (p = 0.001), fat-corrected milk (p < 0.001), and feed efficiency (p < 0.001) were enhanced with PS, while the highest milk protein yield (p < 0.05) and lactose yield (p < 0.001) were for CS-fed ewes. Compared to the CON diet, the ingestion of either CS and/or PS decreased (p < 0.001) the C16:0 in milk. Moreover, both CS and PS tended to enhance the content of C18:3n6 (p > 0.05) and C18:3n3 (p > 0.05). Overall short-term feeding of CS and/or PS (up to 6.1% DM of diet) not only maintains the production performance and digestibility of nutrients but also positively modifies the milk FA composition.


Assuntos
Cucurbita , Animais , Feminino , Ovinos , Cucurbita/metabolismo , Lactação , Salvia hispanica , Detergentes , Fibras na Dieta/metabolismo , Dieta/veterinária , Sementes/metabolismo , Digestão , Ração Animal/análise , Zea mays/metabolismo , Suplementos Nutricionais/análise , Rúmen/metabolismo
8.
Int J Biol Macromol ; 265(Pt 1): 130748, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467216

RESUMO

The present study aimed to investigate the structural and physicochemical characteristics of acid-extracted pumpkin pectic polysaccharide (AcPP) and to evaluate their flow rheological properties. AcPP was extracted from pumpkin pulp using the citric acid extraction method. The physicochemical and structural properties were analyzed by chemical methods and instrumental analyses. The obtained results showed that AcPP consisted predominantly of GalA (85.99 %) and small amounts of Rha, Gal, and Ara, with the ratio of HG/RG-I being 81.39/16.75. In addition, AcPP had medium DE (45.34 %) and contained four macromolecular populations with different Mw of 106.03 (main), 10.15, 4.99, and 2.90 kDa. The NMR analysis further confirmed that AcPP contained a linear backbone consisting of α-1,4-linked GalA residues, some of which were partially methyl-esterified. Furthermore, AcPP was amorphous in nature and had favorable thermal stability. The effects of extrinsic factors on the flow rheological properties of AcPP were evaluated. In particular, the high concentrations of CaCl2 (8 mM) and MgCl2 (10 mM) were effective in enhancing the viscosity and non-Newtonian shear-thinning behavior of the AcPP solution. This study elucidates the unique molecular structure of AcPP and suggests the potential of AcPP as a rheology modifier in low-viscous and mineral-reinforced beverages.


Assuntos
Cucurbita , Pectinas , Pectinas/química , Polissacarídeos/química , Reologia , Espectroscopia de Ressonância Magnética , Viscosidade
9.
Plant Physiol Biochem ; 208: 108443, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479079

RESUMO

Drought is a major limiting factor for the growth and development of pumpkins. Plasma membrane intrinsic proteins (PIPs) are major water channels that play a crucial role in the regulation of cellular water status and solute trafficking during drought conditions. CmoPIP1-4 is a plasma membrane-localized protein that is significantly upregulated in roots and leaves under drought-stress conditions. In this study, the overexpression of CmoPIP1-4 enhances drought resistance in yeast. In contrast, CRISPR-mediated CmoPIP1-4 knockout in pumpkin roots increased drought sensitivity. This increased drought sensitivity of CmoPIP1-4 knockout plants is associated with a decline in the levels of hydrogen sulfide (H2S) and abscisic acid (ABA), accompanied by an increase in water loss caused by greater levels of transpiration and stomatal conductance. In addition, the sensitivity of CmoPIP1-4 CRISPR plants is further aggravated by reduced antioxidative enzyme activity, decreased proline and sugar contents, and extensive root damage. Furthermore, expression profiles of genes such as CmoHSP70s, CmoNCED3, CmoNCED4, and others involved in metabolic activities were markedly reduced in CmoPIP1-4 CRISPR plants. Moreover, we also discovered an interaction between the drought-responsive gene CmoDCD and CmoPIP1-4, indicating their potential role in activating H2S-mediated signaling in pumpkin, which could confer drought tolerance. The findings of our study collectively demonstrate CmoPIP1-4 plays a crucial role in the regulation of H2S-mediated signaling, influencing stomatal density and aperture in pumpkin plants, and thereby enhancing their drought tolerance.


Assuntos
Cucurbita , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Resistência à Seca , Cucurbita/genética , Cucurbita/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Água/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
10.
Sci Rep ; 14(1): 6929, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519514

RESUMO

Soil and water salinity is an important limiting factor affecting yield and production levels in arid and semi-arid areas. Salt tolerance during germination is an important parameter that also affects the other plant development stages. In this respect, this study was designed to determine the responses of pumpkin seed varieties (Develi, Ürgüp, Hybrid) to different NaCl salinities. The study was carried out in 2022 in the laboratory of Biosystems Engineering Department of Erciyes University in randomized plots design with 3 replications. Experiments were conducted with 5 different water salinity. Germination percentage (GP), germination index (GI), mean germination time (MGT), seedling vigor index (SVI), ion leakage (Il), radicula length (RL) and plumule length (PL), root and shoot fresh and dry weights and some mineral composition (Na, K, Ca) were examined. Proline, antioxidant capacity, total phenolic and DPPH content were significantly affected by salinity. In scatter plot correlation analysis SVI a positive correlation was observed between GP (r2 = 0.774), GI (r2 = 0.745), RL (r2 = 0.929), FRW (r2 = 0.837), FSW (r2 = 0.836), DRW (r2 = 0.894), AC (r2 = 0.747), TP (r2 = 0.640) and DPPH (r2 = 0.635). It was determined that there were negative correlations between SVI and MGT (r2 = - 0.902), II (r2 = - 0.588), DSW (r2 = - 0.682) and PR (r2 = - 0.344). Present findings revealed that investigated parameters were significantly affected by increasing salinity levels. While Hybrid cultivar was the most affected by salinity, Develi cultivar was found to be resistant to saline conditions.


Assuntos
Cucurbita , Germinação , Humanos , Salinidade , Plântula , Sementes , Água/química
11.
Sci Rep ; 14(1): 5930, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467669

RESUMO

With widespread cultivation, Cucurbita moschata stands out for the carotenoid content of its fruits such as ß and α-carotene, components with pronounced provitamin A function and antioxidant activity. C. moschata seed oil has a high monounsaturated fatty acid content and vitamin E, constituting a lipid source of high chemical-nutritional quality. The present study evaluates the agronomic and chemical-nutritional aspects of 91 accessions of C. moschata kept at the BGH-UFV and propose the establishment of a core collection based on multivariate approaches and on the implementation of Artificial Neural Networks (ANNs). ANNs was more efficient in identifying similarity patterns and in organizing the distance between the genotypes in the groups. The averages and variances of traits in the CC formed using a 15% sampling of accessions, were closer to those of the complete collection, particularly for accumulated degree days for flowering, the mass of seeds per fruit, and seed and oil productivity. Establishing the 15% CC, based on the broad characterization of this germplasm, will be crucial to optimize the evaluation and use of promising accessions from this collection in C. moschata breeding programs, especially for traits of high chemical-nutritional importance such as the carotenoid content and the fatty acid profile.


Assuntos
Cucurbita , Cucurbita/genética , Brasil , Melhoramento Vegetal , Carotenoides , Frutas/genética
12.
BMC Genomics ; 25(1): 268, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468207

RESUMO

BACKGROUND: The core regulation of the abscisic acid (ABA) signalling pathway comprises the multigenic families PYL, PP2C, and SnRK2. In this work, we conducted a genome-wide study of the components of these families in Cucurbita pepo. RESULTS: The bioinformatic analysis of the C. pepo genome resulted in the identification of 19 CpPYL, 102 CpPP2C and 10 CpSnRK2 genes. The investigation of gene structure and protein motifs allowed to define 4 PYL, 13 PP2C and 3 SnRK2 subfamilies. RNA-seq analysis was used to determine the expression of these gene families in different plant organs, as well as to detect their differential gene expression during germination, and in response to ABA and cold stress in leaves. The specific tissue expression of some gene members indicated the relevant role of some ABA signalling genes in plant development. Moreover, their differential expression under ABA treatment or cold stress revealed those ABA signalling genes that responded to ABA, and those that were up- or down-regulated in response to cold stress. A reduced number of genes responded to both treatments. Specific PYL-PP2C-SnRK2 genes that had potential roles in germination were also detected, including those regulated early during the imbibition phase, those regulated later during the embryo extension and radicle emergence phase, and those induced or repressed during the whole germination process. CONCLUSIONS: The outcomes of this research open new research lines for agriculture and for assessing gene function in future studies.


Assuntos
Proteínas de Arabidopsis , Cucurbita , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Estudo de Associação Genômica Ampla , Plantas/genética , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética
13.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473740

RESUMO

The mottled leaf is one of the agronomic traits of zucchini and can be applied as a marker trait in aggregation breeding. However, the genetic mechanism responsible for mottled leaf has yet to be elucidated. In the present study, we used two inbred lines (line '19': silver mottled leaf; line '113': normal leaf) as parents for the physiological and genetic analysis of mottled leaf. The synthesis and net photosynthetic rate of chlorophyll were not significantly affected in the mottled areas of leaves. However, we detected a large space between the palisade parenchyma in the leaf mottle area of line '19', which may have caused the mottled leaf phenotype. Light also plays an important role in the formation of mottled leaf, and receiving light during the early stages of leaf development is a necessary factor. Genetic analysis has previously demonstrated that mottled leaf is a quantitative trait that is controlled by multiple genes. Based on the strategy of quantitative trait locus sequencing (QTL-seq), two QTLs were identified on chromosomes 1 and 17, named CpML1.1 and CpML17.1, respectively. Two major loci were identified using R/qtl software version 1.66 under greenhouse conditions in April 2019 (2019A) and April 2020 (2020A) and under open cultivation conditions in May 2020 (2020M). The major QTL, CpML1.1, was located in a 925.2-kb interval on chromosome 1 and explained 10.51%-24.15% of the phenotypic variation. The CpML17.1 was located in a 719.7-kb interval on chromosome 17 and explained 16.25%-38.68% of the phenotypic variation. Based on gene annotation, gene sequence alignment, and qRT-PCR analysis, the Cp4.1LG01g23790 at the CpML1.1 locus encoding a protein of the TPX2 family (target protein of Xklp2) may be a candidate gene for mottled leaf in zucchini. Our findings may provide a theoretical basis for the formation of mottled leaf and provide a foundation for the fine mapping of genes associated with mottled leaf. Molecular markers closely linked to mottled leaf can be used in molecular-assisted selection for the zucchini mottled leaf breeding.


Assuntos
Cucurbita , Cucurbita/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Locos de Características Quantitativas , Folhas de Planta/genética
14.
Molecules ; 29(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474434

RESUMO

In this study, AuNPs were biosynthesized from Cucurbita moschata fruit peel extracts. Biosynthesized AuNPs exhibited maximum absorbance at a 555 nm wavelength, and XRD analysis indicated that the CM-AuNPs had a particle size of less than 100 nm and a cubic crystal structure. TEM scans revealed that the gold particles exhibited a spherical morphology, with an average size of 18.10 nm. FTIR analysis revealed strong peaks indicating the presence of functional groups involved in the reduction reactions. The surface charge of the biosynthesized AuNPs was determined to be -19.7 mV. The antibacterial and antifungal activities of AuNPs against pathogen strains were assessed by the minimum inhibitory concentration (MIC) method. The cytotoxic effects of CM-AuNPs on cancer cell lines (Sk-Ov-3, CaCo2, and A549) and healthy cell lines (HUVEC) were investigated using the MTT method. The findings indicated that AuNPs biosynthesized by the green synthesis method using C. moschata peel aqueous extract had high inhibition on the growth of pathogenic microorganisms and effective cytotoxic activity against cancerous cell lines at low doses. As a result, it can be concluded that CM-AuNPs will be eminently effective in the production of antibacterial and/or anticancer drugs in the pharmaceutical, food, and cosmetic industries.


Assuntos
Antineoplásicos , Cucurbita , Nanopartículas Metálicas , Ouro/química , Cucurbita/metabolismo , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Extratos Vegetais/química , Química Verde
15.
J Helminthol ; 98: e25, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509855

RESUMO

Schistosomiasis is a serious health issue in tropical regions, and natural compounds have gained popularity in medical science. This study investigated the potential effects of pumpkin seed oil (PSO) on Biomphalaria [B.] alexandrina snails (Ehrenberg, 1831), Schistosoma [S.] mansoni (Sambon, 1907) miracidium, and cercariae. The chemical composition of PSO was determined using gas chromatography/mass spectrometry. A bioassay was performed to evaluate the effects of PSO on snails, miracidia, and cercariae. The results showed no significant mortality of B. alexandrina snails after exposure to PSO, but it caused morphological changes in their hemocytes at 1.0 mg/ml for 24 hours. PSO exhibited larvicidal activity against miracidia after 2 hours of exposure at a LC50 of 618.4 ppm. A significant increase in the mortality rate of miracidia was observed in a dose- and time-dependent manner, reaching a 100% death rate after 10 minutes at LC90 and 15 minutes at LC50 concentration. PSO also showed effective cercaricidal activity after 2 hours of exposure at a LC50 of 290.5 ppm. Histological examination revealed multiple pathological changes in the digestive and hermaphrodite glands. The PSO had genotoxic effects on snails, which exhibited a significant increase [p≤0.05] in comet parameters compared to the control. The findings suggest that PSO has potential as a molluscicide, miracidicide, and cercaricide, making it a possible alternative to traditional molluscicides in controlling schistosomiasis.


Assuntos
Biomphalaria , Cucurbita , Moluscocidas , Esquistossomose , Animais , Schistosoma mansoni , Caramujos , Cercárias , Moluscocidas/farmacologia , Óleos de Plantas/farmacologia
16.
Langmuir ; 40(11): 5738-5752, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450610

RESUMO

The pumpkin leaf was extracted by the decoction method, and it was used as an eco-friendly, nontoxic inhibitor of copper in 0.5 M H2SO4 corrosion media. To evaluate the composition and protective capacity of the pumpkin leaf extract, Fourier infrared spectroscopy, electrochemical testing, XPS, AFM, and SEM were employed. The results showed that the pumpkin leaf extract (PLE) is an effective cathode corrosion inhibitor, exhibiting exceptional protection for copper within a specific temperature range. The corrosion inhibition efficiency of the PLE against copper reached 89.98% when the concentration of the PLE reached 800 mg/L. Furthermore, when the temperature and soaking time increased, the corrosion protection efficiency of 800 mg/L PLE on copper consistently remained above 85%. Analysis of the morphology also indicated that the PLE possesses equally effective protection for copper at different temperatures. Furthermore, XPS analysis reveals that the PLE molecules are indeed adsorbed to form an adsorption film, which is consistent with Langmuir monolayer adsorption. Molecular dynamics simulations and quantum chemical calculations were conducted on the main components of the PLE.


Assuntos
Cucurbita , Corrosão , Cobre/química , Aço/química , Extratos Vegetais/química
17.
Sci Rep ; 14(1): 6793, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514827

RESUMO

Virus diseases are a major production constraint for pumpkin. Recessive resistance to squash leaf curl China virus and tomato leaf curl New Delhi virus has been mapped in Cucurbita moschata (Duchesne ex Poir.) breeding line AVPU1426 to chromosomes 7 and 8, respectively. Molecular markers tightly associated with the resistance loci have been developed and were able to correctly predict resistance and susceptibility with an accuracy of 99% for squash leaf curl China virus resistance and 94.34% for tomato leaf curl New Delhi virus in F2 and back cross populations derived from the original resistance source AVPU1426. The markers associated with resistance are recommended for use in marker-assisted breeding.


Assuntos
Begomovirus , Cucurbita , Cucurbita/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Begomovirus/genética , Biomarcadores , China
18.
J Texture Stud ; 55(2): e12827, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486420

RESUMO

There is an increasing demand for texture sensations of bread during mastication, with reformulation being needed. This study investigated how bread structure influences oral processing behavior and texture perception. Variations in bread structure were created by manipulating ingredient additions, including pumpkin content and pumpkin processing methods. Results indicated that the physical, chemical, and structural properties drove the oral processing behaviors, and texture sensations were highly correlated with bolus properties. At the beginning and middle of the mastication, bolus from breads with low pumpkin-content required more saliva and exhibited greater hardness, lower adhesiveness, and a higher proportion of small-piece particles than the bolus from high pumpkin-content breads. Bolus from pumpkin pulp breads required more saliva, and was softer, stickier, and generated particles with a lower degree of degradation than the bolus from pumpkin puree breads. However, at the end period, the bolus properties tended to change to similar values. Low pumpkin content breads were initially perceived chewy, whereas high pumpkin content, soft. The dominance rate for soft sensation was higher and lasted longer in breads with pumpkin puree than in breads with pumpkin pulp. Finally, six bread samples were all perceived as hydrated, sticky, and crumbly. This study contributes to a better understanding of the impact of reformulation on oral behavior and sensory properties.


Assuntos
Pão , Cucurbita , Saliva , Sensação , Adesividade
19.
Physiol Plant ; 176(2): e14232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450746

RESUMO

Grafting onto pumpkin rootstock is widely applied in cucumber production to improve growth and yield, as well as to overcome soil-borne diseases and enhance resistance to abiotic stresses. In this study, we constructed the cucumber-pumpkin heterografts with the one-cotyledon grafting method, and examined the effects of heterografting on biomass allocation and sugar partitioning, with cucumber and pumpkin self-grafts used as control. Compared with cucumber self-grafts, heterografting onto pumpkin rootstock promoted photosynthesis in cucumber scion, and led to higher sucrose contents in the 1st true leaf (source) and newly emerged leaf (sink). Thereby, the scion part of heterografts accumulated more biomass than cucumber self-grafts. In contrast, when compared to pumpkin self-grafts, grafting with cucumber scion reduced root vigor and biomass but promoted cotyledon growth in pumpkin rootstock. The roots (sink) of heterografts contained less sucrose and hexoses, and showed reduced sucrose synthase (SuSy) and hexokinase (HXK) activities. However, the rootstock cotyledon (source) contained more sucrose and starch, and showed higher activities of HXK, cell-wall invertase (CWIN), and enzymes for starch synthesis and degradation. Furthermore, removal or shade of rootstock cotyledon led to reduced growth of root and scion. Silencing of CmoMEX1a gene in rootstock cotyledon inhibited maltose export and reduced root growth of heterografts. These results indicated that rootstock cotyledon, especially its starch content, played a buffering role in the growth regulation of cucumber-pumpkin heterografts. Taken together, our results provided a major contribution to our understanding of source-sink sugar partitioning and scion-rootstock growth balancing in cucumber-pumpkin heterografts.


Assuntos
Cucumis sativus , Cucurbita , Cucumis sativus/genética , Cucurbita/genética , Xenoenxertos , Cotilédone , Açúcares , Amido , Sacarose
20.
Int J Biol Macromol ; 264(Pt 1): 130510, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447847

RESUMO

Pectin polysaccharides have demonstrated diverse biological activities, however, the inflammatory potential of pectin polysaccharides extracted from Cucurbita moschata Duch remains unexplored. This study aims to extract, characterize and evaluate the effects of pumpkin pectin polysaccharide on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis in mice, along with its underlying mechanism of action. Initially, we extracted three fractions of pectin polysaccharides from pumpkin and screened them for anti-inflammatory activity in LPS-induced macrophages, identifying CMDP-3a as the most potent anti-inflammatory fraction. Subsequently, CMDP-3a underwent comprehensive characterization through chromatography and spectroscopic analysis, revealing CMDP-3a as an RG-I-HG type pectin polysaccharide with →4)-α-D-GalpA-(1 â†’ and →4)-α-D-GalpA-(1 â†’ 2,4)-α-L-Rhap-(1 â†’ as the main chain. Further, in the LPS-induced RAW264.7 cells model, treatment with CMDP-3a significantly down-regulated the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (IL-1ß, TNF-α, and IL-6) by inhibiting the MAPK and NF-κB signaling pathways. Finally, in a mouse colitis model, CMDP-3a administration obviously inhibited DSS-induced pathological alterations and reduced inflammatory cytokine expressions in the colonic tissues by down-regulating the TLR4/NF-κB and MAPK pathways. These findings provide a molecular basis for the potential application of CMDP-3a in reducing inflammatory responses.


Assuntos
Colite , Cucurbita , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/efeitos adversos , Pectinas/farmacologia , Pectinas/metabolismo , Anti-Inflamatórios/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...